On Ramsey-Minimal Infinite Graphs

نویسندگان

چکیده

For fixed finite graphs $G$, $H$, a common problem in Ramsey theory is to study $F$ such that $F \to (G,H)$, i.e. every red-blue coloring of the edges produces either red $G$ or blue $H$. We generalize this infinite $H$; particular, we want determine if there minimal $F$. This has strong connections self-embeddable graphs: which properly contain copy themselves. prove some compactness results relating case, then give general conditions for pair $(G,H)$ have Ramsey-minimal graph. use these prove, example, $G=S_\infty$ an star and $H=nK_2$, $n \ge 1$ matching, $(S_\infty,nK_2)$ admits no graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

On Ramsey Minimal Graphs

An elementary probabilistic argument is presented which shows that for every forest F other than a matching, and every graph G containing a cycle, there exists an infinite number of graphs J such that J → (F,G) but if we delete from J any edge e the graph J − e obtained in this way does not have this property. Introduction. All graphs in this note are undirected graphs, without loops and multip...

متن کامل

On Ramsey Minimal Graphs

A graph G is r-ramsey-minimal with respect to Kk if every rcolouring of the edges of G yields a monochromatic copy of Kk, but the same is not true for any proper subgraph of G. In this paper we show that for any integer k ≥ 3 and r ≥ 2, there exists a constant c > 1 such that for large enough n, there exist at least c 2 non-isomorphic graphs on at most n vertices, each of which is r-ramsey-mini...

متن کامل

On highly ramsey infinite graphs

We show that, for k ≥ 3, there exists a positive constant c such that for large enough n there are 2 2 non-isomorphic graphs on at most n vertices that are 2-ramsey-minimal for the odd cycle C2k+1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Combinatorics

سال: 2021

ISSN: ['1077-8926', '1097-1440']

DOI: https://doi.org/10.37236/10046